Ramsey Multiplicity of Linear Patterns in Certain Finite Abelian Groups
نویسنده
چکیده
Abstract. It is well known (and a result of Goodman) that a random 2-colouring of the edges of a large complete graph Kn contains asymptotically (in n) the minimum number of monochromatic triangles (K3s). Erdős conjectured that a random 2-colouring also minimises the number of monochromatic K4s, but his conjecture was disproved by Thomason in 1989. The question of determining for which small graphs Goodman’s result holds true remains wide open. In this article we explore an arithmetic analogue: what can be said about the number of monochromatic additive configurations in 2-colourings of finite abelian groups? While we are able to answer several instances of this question using techniques from additive combinatorics and quadratic Fourier analysis, the main purpose of this paper is to advertise this sphere of problems and to put forward a number of concrete conjectures. We also note that, perhaps surprisingly, some of our results in the arithmetic setting have implications for the original graph-theoretic problem.
منابع مشابه
Triple factorization of non-abelian groups by two maximal subgroups
The triple factorization of a group $G$ has been studied recently showing that $G=ABA$ for some proper subgroups $A$ and $B$ of $G$, the definition of rank-two geometry and rank-two coset geometry which is closely related to the triple factorization was defined and calculated for abelian groups. In this paper we study two infinite classes of non-abelian finite groups $D_{2n}$ and $PSL(2,2^{n})$...
متن کاملOn $m^{th}$-autocommutator subgroup of finite abelian groups
Let $G$ be a group and $Aut(G)$ be the group of automorphisms of $G$. For any natural number $m$, the $m^{th}$-autocommutator subgroup of $G$ is defined as: $$K_{m} (G)=langle[g,alpha_{1},ldots,alpha_{m}] |gin G,alpha_{1},ldots,alpha_{m}in Aut(G)rangle.$$ In this paper, we obtain the $m^{th}$-autocommutator subgroup of all finite abelian groups.
متن کاملHindman’s Theorem in Abelian Groups
Hindman’s theorem tells us that for every finite colouring/partition of the natural numbers, there is an infinite subset X for which every finite subset X0 Ď X has the same colour for ř X0. Certain generalisations of this theorem to abelian groups are known to fail in the uncountable case but an example exists for boolean groups when the desired homogeneous set is finite. In this paper, I will ...
متن کاملOn Laplacian energy of non-commuting graphs of finite groups
Let $G$ be a finite non-abelian group with center $Z(G)$. The non-commuting graph of $G$ is a simple undirected graph whose vertex set is $Gsetminus Z(G)$ and two vertices $x$ and $y$ are adjacent if and only if $xy ne yx$. In this paper, we compute Laplacian energy of the non-commuting graphs of some classes of finite non-abelian groups..
متن کاملPairwise non-commuting elements in finite metacyclic $2$-groups and some finite $p$-groups
Let $G$ be a finite group. A subset $X$ of $G$ is a set of pairwise non-commuting elements if any two distinct elements of $X$ do not commute. In this paper we determine the maximum size of these subsets in any finite non-abelian metacyclic $2$-group and in any finite non-abelian $p$-group with an abelian maximal subgroup.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016